N 832

Seat No.				

2025 III 07 1100 - N 832- mathematics (71) Geometry—part II (E)

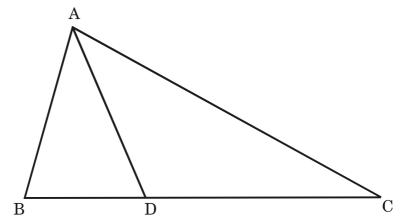
(REVISED COURSE)

Time: 2 Hours (Pages 12) Max. Marks: 40

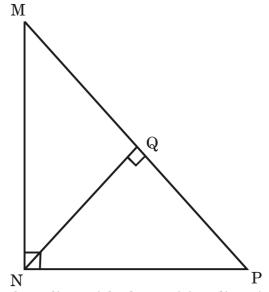
Note :—

- (i) All questions are compulsory.
- (ii) Use of a calculator is not allowed.
- (iii) The numbers to the right of the questions indicate full marks.
- (iv) In case of MCQs [Q. No. 1(A)] only the first attempt will be evaluated and will be given credit.
- (v) Draw proper figures wherever necessary.
- (vi) The marks of construction should be clear. Do not erase them.
- (vii) Diagram is essential for writing the proof of the theorem.
- 1. (A) Choose the correct alternative from given :
 - (1) Out of the following which is a Pythagorean triplet?
 - (A) (1, 5, 10)
 - (B) (3, 4, 5)
 - (C) (2, 2, 2)
 - (D) (5, 5, 2)

P.T.O.

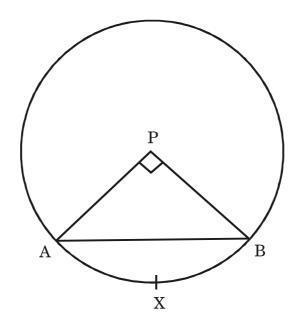

4

(2)	∠ACB is inscribed angle in a circle with centre O. If ∠AC					
	= 65°	e, then what is measure of its intercepted arc AXB?				
	(A)	65°				
	(B)	230°				
	(C)	295°				
	(D)	130°				
(3)	Distance of point (3, 4) from the origin is					
	(A)	7				
	(B)	1				
	(C)	5				
	(D)	-5				
(4)	If rac	dius of cone is 5 cm and its perpendicular height is 12 cm,				
	then the slant height is					
	(A)	17 cm				
	(B)	4 cm				
	(C)	13 cm				
	(D)	60 cm				


(B) Solve the following sub-questions:

4

(1) In the following figure \triangle ABC, B-D-C and BD = 7, BC = 20, then find $\frac{A(\triangle \ ABD)}{A(\triangle \ ABC)}$.


(2) In the following figure $\angle MNP$ = 90°, seg NQ \perp seg MP, MQ = 9, QP = 4, find NQ.

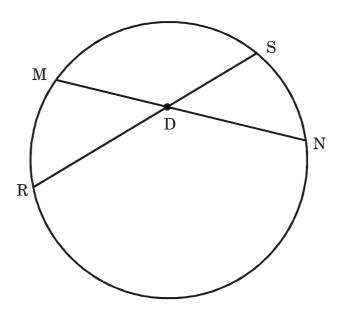
- (3) Angle made by a line with the positive direction of X-axis is 30°. Find slope of that line.
- (4) In cyclic quadrilateral ABCD $m\angle A = 100^{\circ}$, then find $m\angle C$.

- 2. (A) Complete the following activities and rewrite it (any two): 4
 - (1) The radius of a circle with centre 'P' is 10 cm. If chord AB of the circle subtends a right angle at P, find area of minor sector by using the following activity. ($\pi = 3.14$)

Activity:

$$r = 10$$
 cm, $\theta = 90^{\circ}$, $\pi = 3.14$.

$$A(P-AXB) = \frac{\theta}{360} \times \boxed{$$

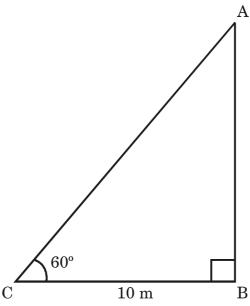

$$= \frac{1}{4} \times \boxed{}$$

$$= \frac{1}{4} \times \boxed{}$$

$$A(P-AXB) =$$
 sq. cm.

(2) In the following figure chord MN and chord RS intersect at point D. If RD = 15, DS = 4, MD = 8, find DN by completing the following activity:

Activity:


$$\therefore$$
 MD × DN = × DS

...... (Theorem of internal division of chords)

$$\therefore \qquad \qquad | \times DN = 15 \times 4$$

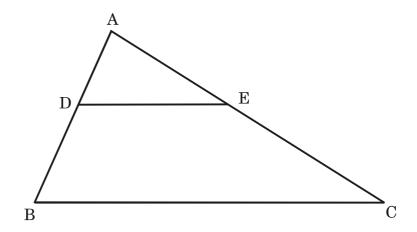
(3) An observer at a distance of 10 m from tree looks at the top of the tree, the angle of elevation is 60° . To find the height of tree complete the activity. $(\sqrt{3} = 1.73)$

Activity:

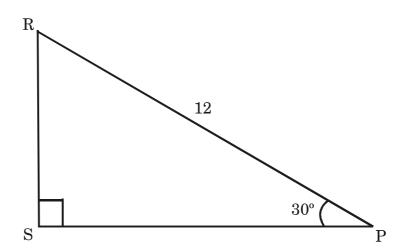
In the figure given above, AB = h = height of tree, BC = 10 m, distance of the observer from the tree.

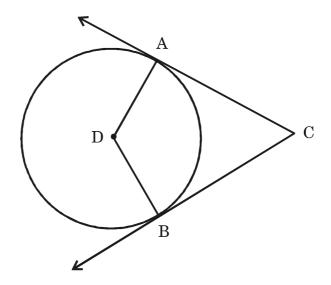
Angle of elevation (θ) = $\angle BCA = 60^{\circ}$

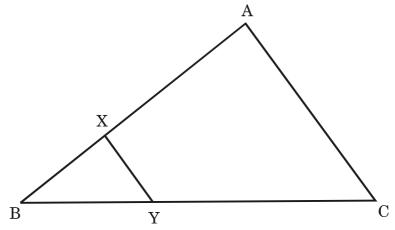
$$\tan \theta = \frac{\Box}{BC}$$
(I)


$$\frac{AB}{BC} = \sqrt{3}$$
 (From (I) and (II))

$$AB = BC \times \sqrt{3} = 10\sqrt{3}$$


∴ height of the tree is m

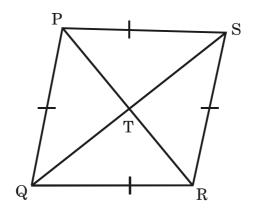

- (B) Solve the following sub-questions (any four):
 - (1) In Δ ABC, DE \parallel BC. If DB = 5.4 cm, AD = 1.8 cm, EC = 7.2 cm, then find AE.


(2) In the figure given below, find RS and PS using the information given in ΔPSR .

(3) In the following figure, circle with centre D touches the sides of $\angle ACB$ at A and B. If $\angle ACB = 52^{\circ}$, find measure of $\angle ADB$.

- (4) Verify, whether points, A(1, -3), B(2, -5) and C(-4, 7) are collinear or not.
- (5) If $\sin \theta = \frac{11}{61}$, find the values of $\cos \theta$ using trigonometric identity.
- 3. (A) Complete the following activities and rewrite it (any one): 3
 - (1) In the following figure, $XY \parallel \text{seg AC}$. If 2AX = 3BX and XY = 9. Complete the activity to find the value of AC.

Activity:


$$2AX = 3BX$$
 (Given)

$$\therefore \frac{AX}{BX} = \frac{3}{\Box}$$

$$\frac{AX + BX}{BX} = \frac{3+2}{2} \dots \text{ (by componendo)}$$

$$\frac{\Box}{BX} = \frac{5}{2} \dots \text{ (I)}$$

(2) Complete the following activity to prove that the sum of squares of diagonals of a rhombus is equal to the sum of the squares of the sides.

Given:

 $\square\operatorname{PQRS}$ is a rhombus. Diagonals PR and SQ intersect each other at point T.

To prove :
$$PS^2 + SR^2 + QR^2 + PQ^2 = PR^2 + QS^2$$

Activity:

Diagonals of a rhombus bisect each other.

In \triangle PQS, PT is the median and in \triangle QRS, RT is the median.

.. by Apollonius theorem,

$$PQ^2 + PS^2 =$$
 + $2QT^2$ (I)

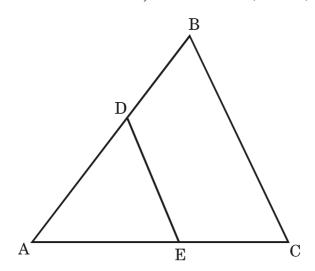
$$QR^2 + SR^2 =$$
 + $2QT^2$ (II)

adding (I) and (II),

$$PQ^{2} + PS^{2} + QR^{2} + SR^{2} = 2(PT^{2} +) + 4QT^{2}$$

$$= 2(PT^{2} +) + 4QT^{2}$$

$$\dots (RT = PT)$$


$$= 4PT^2 + 4QT^2$$

$$= ([])^2 + (2QT)^2$$

$$\therefore PQ^2 + PS^2 + QR^2 + SR^2 = PR^2 + \boxed{}$$

- (B) Solve the following sub-questions (any two):
 - (1) Show that points P(1, -2), Q(5, 2), R(3, -1), S(-1, -5) are the vertices of a parallelogram.
 - (2) Prove that tangent segments drawn from an external point to a circle are congruent.
 - (3) Draw a circle with radius 4.1 cm. Construct tangents to the circle from a point at a distance 7.3 cm from the centre.
 - (4) How many solid cylinders of radius 10 cm and height 6 cm can be made by melting a solid sphere of radius 30 cm?
- 4. Solve the following sub-questions (any two):
 - (1) In the following figure $DE \parallel BC$, then:
 - (i) If DE = 4 cm, BC = 8 cm, $A(\Delta ADE) = 25 \text{ cm}^2$, find $A(\Delta ABC)$.
 - (ii) If DE : BC = 3 : 5, then find $A(\triangle ADE)$: $A(\square DBCE)$.

P.T.O.

8

- (2) Δ ABC ~ Δ PQR. In Δ ABC, AB = 3.6 cm, BC = 4 cm and AC = 4.2 cm. The corresponding sides of Δ ABC and Δ PQR are in the ratio 2 : 3, construct Δ ABC and Δ PQR.
- (3) The radii of the circular ends of a frustum of a cone are 14 cm and 8 cm. If the height of the frustum is 8 cm, find : $(\pi = 3.14)$
 - (i) Curved surface area of frustum.
 - (ii) Total surface area of the frustum.
 - (iii) Volume of the frustum.
- 5. Solve the following sub-questions (any one):

 $\mathbf{3}$

- (1) □ABCD is a rectangle. Taking AD as a diameter, a semicircle AXD is drawn which intersects the diagonal BD at X. If AB = 12 cm,
 AD = 9 cm, then find the values of BD and BX.
- (2) Taking $\theta = 30^{\circ}$ to verify the following Trigonometric identities :
 - (i) $\sin^2 \theta + \cos^2 \theta = 1$
 - (ii) $1 + \tan^2 \theta = \sec^2 \theta$
 - (iii) $1 + \cot^2 \theta = \csc^2 \theta$.